In this example, we will use Linear Regression to predict Calorie Burnage based on Average Pulse.
import pandas as pd import matplotlib.pyplot as plt from scipy import stats full_health_data = pd.read_csv(“data.csv”, header=0, sep=“,”) x = full_health_data[“Average_Pulse”] y = full_health_data [“Calorie_Burnage”] slope, intercept, r, p, std_err = stats.linregress(x, y) def myfunc(x): return slope * x + intercept mymodel = list(map(myfunc, x)) plt.scatter(x, y) plt.plot(x, slope * x + intercept) plt.ylim(ymin=0, ymax=2000) plt.xlim(xmin=0, xmax=200) plt.xlabel(“Average_Pulse”) plt.ylabel (“Calorie_Burnage”) plt.show() |
Example Explained:
slope, intercept, r, p, std_err = stats.linregress(x, y)
.mymodel = list(map(myfunc, x))
.plt.scatter(x, y)
.plt.plot(x, mymodel)
.