Curriculum
Course: Data Science
Login

Curriculum

Data Science

Text lesson

Remove Blank Rows

We notice that the non-numeric values (9,000 and “AF”) are in the same rows as the missing values.

Solution: We can remove the rows with missing observations to resolve this issue.

When loading a dataset with Pandas, all blank cells are automatically converted into “NaN” values.

By removing the NaN values, we obtain a clean dataset suitable for analysis.

We can use the dropna() function to remove the NaN values. axis=0 specifies that we want to remove all rows containing a NaN value.

Example

health_data.dropna(axis=0,inplace=True)

print(health_data)

The result is a dataset with all NaN rows removed.

img_data_raw