Curriculum
Course: Data Science
Login

Curriculum

Data Science

Text lesson

Analyze the Data

Once the dataset is cleaned, we can begin analyzing the data.

The describe() function in Python can be used to generate a summary of the data.

Example

print(health_data.describe())

Result:

 

Duration

Average_Pulse

Max_Pulse

Calorie_Burnage

Hours_Work

Hours_Sleep

Count

10.0

10.0

10.0

10.0

10.0

10.0

Mean

51.0

102.5

137.0

285.0

6.6

7.5

Std

10.49

15.4

11.35

30.28

3.63

0.53

Min

30.0

80.0

120.0

240.0

0.0

7.0

25%

45.0

91.25

130.0

262.5

7.0

7.0

50%

52.5

102.5

140.0

285.0

8.0

7.5

75%

60.0

113.75

145.0

307.5

8.0

8.0

Max

60.0

125.0

150.0

330.0

10.0

8.0

  • Count: The total number of observations.
  • Mean: The average value.
  • Std: The standard deviation (covered in the statistics chapter).
  • Min: The smallest value.
  • 25%, 50%, and 75%: Percentiles (explained in the statistics chapter).
  • Max: The largest value.