Curriculum
Course: Data Science
Login

Curriculum

Data Science

Text lesson

DS Plotting Linear Functions

The Sports Watch Data Set

Let’s examine our health dataset:

Duration

Average_Pulse

Max_Pulse

Calorie_Burnage

Hours_Work

Hours_Sleep

30

80

120

240

10

7

30

85

120

250

10

7

45

90

130

260

8

7

45

95

130

270

8

7

45

100

140

280

0

7

60

105

140

290

7

8

60

110

145

300

7

8

60

115

145

310

8

8

75

120

150

320

0

8

75

125

150

330

8

8

Plot the Existing Data in Python

Next, we can plot the values of Average_Pulse against Calorie_Burnage using the matplotlib library.

The plot() function is used to create a 2D plot of points x and y.

Example

import matplotlib.pyplot as plt

health_data.plot(x =‘Average_Pulse’y=‘Calorie_Burnage’, kind=‘line’),
plt.ylim(ymin=0)
plt.xlim(xmin=0)

plt.show(

Example Explained:

  • Import the pyplot module from the matplotlib library.
  • Plot the data of Average_Pulse against Calorie_Burnage.
  • kind='line' specifies that we want a line plot.
  • plt.ylim() and plt.xlim() define the starting values for the axes. In this case, we set them to start from zero.
  • plt.show() displays the plot.

The code above will generate the following result:

img_linearity2

The Graph Output

As observed, there is a correlation between Average_Pulse and Calorie_Burnage. Calorie_Burnage increases in proportion to Average_Pulse, indicating that Average_Pulse can be used to predict Calorie_Burnage.