Examining our test dataset, we can identify that rows 11 and 12 are duplicates.
duplicated()
method, which returns Boolean values for each row.Duplicate rows are rows that appear more than once in a dataset.
Duration Date Pulse Maxpulse Calories 0 60 ‘2020/12/01’ 110 130 409.1 1 60 ‘2020/12/02’ 117 145 479.0 2 60 ‘2020/12/03’ 103 135 340.0 3 45 ‘2020/12/04’ 109 175 282.4 4 45 ‘2020/12/05’ 117 148 406.0 5 60 ‘2020/12/06’ 102 127 300.0 6 60 ‘2020/12/07’ 110 136 374.0 7 450 ‘2020/12/08’ 104 134 253.3 8 30 ‘2020/12/09’ 109 133 195.1 9 60 ‘2020/12/10’ 98 124 269.0 10 60 ‘2020/12/11’ 103 147 329.3 11 60 ‘2020/12/12’ 100 120 250.7 12 60 ‘2020/12/12’ 100 120 250.7 13 60 ‘2020/12/13’ 106 128 345.3 14 60 ‘2020/12/14’ 104 132 379.3 15 60 ‘2020/12/15’ 98 123 275.0 16 60 ‘2020/12/16’ 98 120 215.2 17 60 ‘2020/12/17’ 100 120 300.0 18 45 ‘2020/12/18’ 90 112 NaN 19 60 ‘2020/12/19’ 103 123 323.0 20 45 ‘2020/12/20’ 97 125 243.0 21 60 ‘2020/12/21’ 108 131 364.2 22 45 NaN 100 119 282.0 23 60 ‘2020/12/23’ 130 101 300.0 24 45 ‘2020/12/24’ 105 132 246.0 25 60 ‘2020/12/25’ 102 126 334.5 26 60 20201226 100 120 250.0 27 60 ‘2020/12/27’ 92 118 241.0 28 60 ‘2020/12/28’ 103 132 NaN 29 60 ‘2020/12/29’ 100 132 280.0 30 60 ‘2020/12/30’ 102 129 380.3 31 60 ‘2020/12/31’ 92 115 243.0 |
Examining our test dataset, we can identify that rows 11 and 12 are duplicates.
To detect duplicates, we can use the duplicated()
method, which returns Boolean values for each row.
Returns True
for each duplicate row; otherwise, it returns False
.
print(df.duplicated()) |
Use the drop_duplicates()
method to remove duplicate rows.
Eliminate all duplicate rows.
df.drop_duplicates(inplace = True) |
Note: Setting inplace=True ensures that duplicates are removed directly from the original DataFrame instead of returning a new one. |