Curriculum
Course: Pandas
Login
Text lesson

Cleaning Data

Data Cleaning

Data cleaning involves correcting bad data in your dataset, such as:

  • Empty cells
  • Incorrect data formats
  • Invalid data
  • Duplicates

In this tutorial, you’ll learn how to handle all of these issues.

Our Data Set

In the upcoming chapters, we will work with this dataset.

Duration Date Pulse Maxpulse Calories

0 60 ‘2020/12/01’ 110 130 409.1

1 60 ‘2020/12/02’ 117 145 479.0

2 60 ‘2020/12/03’ 103 135 340.0

3 45 ‘2020/12/04’ 109 175 282.4

4 45 ‘2020/12/05’ 117 148 406.0

5 60 ‘2020/12/06’ 102 127 300.0

6 60 ‘2020/12/07’ 110 136 374.0

7 450 ‘2020/12/08’ 104 134 253.3

8 30 ‘2020/12/09’ 109 133 195.1

9 60 ‘2020/12/10’ 98 124 269.0

10 60 ‘2020/12/11’ 103 147 329.3

11 60 ‘2020/12/12’ 100 120 250.7

12 60 ‘2020/12/12’ 100 120 250.7

13 60 ‘2020/12/13’ 106 128 345.3

14 60 ‘2020/12/14’ 104 132 379.3

15 60 ‘2020/12/15’ 98 123 275.0

16 60 ‘2020/12/16’ 98 120 215.2

17 60 ‘2020/12/17’ 100 120 300.0

18 45 ‘2020/12/18’ 90 112 NaN

19 60 ‘2020/12/19’ 103 123 323.0

20 45 ‘2020/12/20’ 97 125 243.0

21 60 ‘2020/12/21’ 108 131 364.2

22 45 NaN 100 119 282.0

23 60 ‘2020/12/23’ 130 101 300.0

24 45 ‘2020/12/24’ 105 132 246.0

25 60 ‘2020/12/25’ 102 126 334.5

26 60 2020/12/26 100 120 250.0

27 60 ‘2020/12/27’ 92 118 241.0

28 60 ‘2020/12/28’ 103 132 NaN

29 60 ‘2020/12/29’ 100 132 280.0

30 60 ‘2020/12/30’ 102 129 380.3

31 60 ‘2020/12/31’ 92 115 243.0

The dataset has various issues, including:

  • Empty cells (“Date” in row 22, “Calories” in rows 18 and 28).
  • Incorrect format (“Date” in row 26).
  • Invalid data (“Duration” in row 7).
  • Duplicate entries (rows 11 and 12).